High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis
نویسندگان
چکیده
Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions.
منابع مشابه
Influence of shear stress magnitude and direction on atherosclerotic plaque composition
The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE-/- mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation o...
متن کاملEffect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model
Atherosclerotic prone-rupture plaque is mainly localized in the region of the entrance to the stenosis with high shear stress and the reasons are largely unknown. Our hypothesis is that such a distribution of cells in atherosclerotic plaque may depend on the angiogenesis. Silastic collars induced regions of high shear stress (20.68 ± 5.27 dynes/cm2) in the upstream flow and low shear stress (12...
متن کاملLetter by Jankowski regarding article, "Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress".
BACKGROUND Atherosclerotic lesions are predominantly observed in curved arteries and near side branches, where low or oscillatory shear stress patterns occur, suggesting a causal connection. However, the effect of shear stress on plaque vulnerability is unknown because the lack of an appropriate in vivo model precludes cause-effect studies. METHODS AND RESULTS We developed a perivascular shea...
متن کاملAtherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress
Background—Atherosclerotic lesions are predominantly observed in curved arteries and near side branches, where low or oscillatory shear stress patterns occur, suggesting a causal connection. However, the effect of shear stress on plaque vulnerability is unknown because the lack of an appropriate in vivo model precludes cause-effect studies. Methods and Results—We developed a perivascular shear ...
متن کاملSPOTLIGHT REVIEW Biomechanical factors and macrophages in plaque stability
Thin-cap fibroatheromas (TCFAs) or vulnerable atherosclerotic plaques are considered a high-risk phenotype for acute cardiovascular events. TCFAs are identified by a thin rupture-prone fibrous cap, a large necrotic core, and a high content of leucocytes. Atherogenesis is dependent upon complex patterns of blood flow. Slow-flowing blood imposing low shear stress on the arterial wall up-regulates...
متن کامل